Frozen Singularities and Moduli Spaces in High Dimensions

Hector Parra De Freitas
(IPhT Saclay, PhD w/ Mariana Graña)

Based on upcoming works
[HP] and [Montero, HP]

String Pheno 2022, Liverpool

In [de Boer, Dijkgraaf, Hori, Keurentjes, Morgan, Morrison, Sethi 2001] the moduli space of string vacua with 16 supercharges was studied very thoroughly, specially in seven dimensions:

Heterotic description	Orientifold description	M theory on K3 with frozen singularities of type	F theory compactified on
"standard component"	$\left(-^{8}\right)$	smooth $K 3$	$K 3 \times S^{1}$
\mathbb{Z}_{2} triple CHL string no vector structure	$\left(-^{6},+^{2}\right)$	$D_{4} \oplus D_{4}$	$\left(K 3 \times S^{1}\right) / \mathbb{Z}_{2}$
\mathbb{Z}_{3} triple		$E_{6} \oplus E_{6}$	$\left(K 3 \times S^{1}\right) / \mathbb{Z}_{3}$
\mathbb{Z}_{4} triple		$E_{7} \oplus E_{7}$	$\left(K 3 \times S^{1}\right) / \mathbb{Z}_{4}$
\mathbb{Z}_{5} triple		$E_{8} \oplus E_{8}$	$\left(K 3 \times E_{8}\right) / \mathbb{Z}_{5}$
\mathbb{Z}_{6} triple	$\left(D_{4}\right)^{4}$	$\left(K 3 \times S^{1}\right) / \mathbb{Z}_{6}$	
	$\left(-^{4},+^{4}\right)_{1}$	$\left(E_{6}\right)^{3}$	$\left(T^{4} \times S^{1}\right) / \mathbb{Z}_{2}$
	$\left(-^{4},++^{4}\right)_{2}$	$D_{4} \oplus E_{7} \oplus E_{7}$	$\left(T^{4} \times S^{1}\right) / \mathbb{Z}_{3}$
		$\left.D_{4} \oplus E_{6} \oplus E_{8}\right) / \mathbb{Z}_{4}$	
		$\left(T^{4} \times S^{1}\right) / \mathbb{Z}_{6}$	

Frozen singularities are such that they cannot be resolved, thus they reduce the number of moduli and gauge group rank. In this case, due to nontrivial 3-form background. Not well understood.

Heterotic description	Orientifold description	M theory on K3 with frozen singularities of type	F theory compactified on
"standard component"	$\left(-^{8}\right)$	smooth $K 3$	$K 3 \times S^{1}$
\mathbb{Z}_{2} triple CHL string no vector structure	$\left(-^{6},+^{2}\right)$	$D_{4} \oplus D_{4}$	$\left(K 3 \times S^{1}\right) / \mathbb{Z}_{2}$
\mathbb{Z}_{3} triple		$E_{6} \oplus E_{6}$	$\left(K 3 \times S^{1}\right) / \mathbb{Z}_{3}$
\mathbb{Z}_{4} triple		$E_{7} \oplus E_{7}$	$\left(K 3 \times S^{4}\right) / \mathbb{Z}_{4}$
\mathbb{Z}_{5} triple		$\left(D_{4}\right)^{4}$	$\left(K 3 \times S_{8}^{1}\right) / \mathbb{Z}_{5}$
\mathbb{Z}_{6} triple		$\left(E_{6}\right)^{3}$	$\left(T^{4} \times S^{1}\right) / \mathbb{Z}_{2}$
	$\left(-^{4},+^{4}\right)_{2}$		
		$D_{4} \oplus E_{7} \oplus E_{7}$	$\left(T^{4} \times S^{1}\right) / \mathbb{Z}_{4}$
	$D_{4} \oplus E_{6} \oplus E_{8}$	$\left(T^{4} \times S^{1}\right) / \mathbb{Z}_{6}$	

The highlighted orientifolds are perturbatively inequivalent. Nonperturbative inequivalent if there exist inequivalent embeddings (uplifts to K3)

$$
4 D_{4} \hookrightarrow \Gamma_{3,19}
$$

To see this, in both cases Exchange ("unfreeze") $\quad O 6^{+} \longrightarrow O 6^{-}+4 D 6$
This is usual Type II orientifold, dual to $\operatorname{Spin}(32) / Z_{2}$ Heterotic on T^{3}

$$
\begin{array}{ll}
A_{1}=\left(0,0,0,0,0,0,0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \\
A_{2}=\left(0,0,0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), & W_{\operatorname{Spin}(8)^{4} / \mathbb{Z}_{2}^{2}} \\
A_{3}=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) . & \\
A_{1}=\left(0,0,0,0,0,0,0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), & \\
A_{2}=\left(0,0,0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), & W_{\operatorname{Spin}(8)^{4} / \mathbb{Z}_{2}} \\
A_{3}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,0,0,0,0,0,0\right) .
\end{array}
$$

To see this, in both cases Exchange ("unfreeze") $\quad O 6^{+} \longrightarrow O 6^{-}+4 D 6$
This is usual Type II orientifold, dual to $\operatorname{Spin}(32) / Z_{2}$ Heterotic on T^{3}

$$
\begin{aligned}
& A_{1}=\left(0,0,0,0,0,0,0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \\
& A_{2}=\left(0,0,0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \\
& A_{3}=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}=\left(0,0,0,0,0,0,0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \\
& A_{2}=\left(0,0,0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \\
& A_{3}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,0,0,0,0,0,0\right) .
\end{aligned}
$$

$$
W_{\text {Spin }(8)^{4} / \mathbb{Z}_{2}}
$$

$$
\begin{array}{lll}
\Lambda_{\text {charge }}=W_{\text {Spin }(8)^{4} / \mathbb{Z}_{2}^{2}}^{\perp}=\Gamma_{1,1} \oplus \Gamma_{2,2}(2), & & G_{\text {enh }}=S U(2)^{3} / \mathbb{Z}_{2}^{2} \\
\Lambda_{\text {charge }}^{\prime}=W_{\text {Spin }(8)^{4} / \mathbb{Z}_{2}}^{\prime}=\Gamma_{3,3}(2), & & G_{\text {enh }}=S U(2)^{3}
\end{array}
$$

Similarly, there are two inequivalent embeddings for $3 E_{6}$ and $2 E_{7}+D_{4}$, [Fraiman, HP 2021] Hence two different moduli space components for each:
$3 \mathrm{E}_{6}:$

$$
\begin{array}{ll}
\Lambda_{\text {charge }}=W_{E_{6}^{3} / \mathbb{Z}_{3}}^{\perp}=A_{2}(-1) \oplus \Gamma_{1,1}, & G_{\text {enh }}=S U(2) \\
\Lambda_{\text {charge }}^{\prime}=W_{E_{6}^{3}}^{\perp}=A_{2}(-1) \oplus \Gamma_{1,1}(3), & G_{\text {enh }}=S U(2)
\end{array}
$$

$2 \mathrm{E}_{7}+\mathrm{D}_{4}:$

$$
\begin{array}{ll}
\Lambda_{\text {charge }}=W_{E_{7}^{2} \times \operatorname{Spin}(8) / \mathbb{Z}_{2}}^{\perp}=2 A_{1}(-1) \oplus \Gamma_{1,1}, & G_{\text {enh }}=S U(2) \\
\Lambda_{\text {charge }}^{\prime}=W_{E_{7}^{2} \times \operatorname{Spin}(8)}^{\perp}=2 A_{1}(-1) \oplus \Gamma_{1,1}(2), & G_{\text {enh }}=S U(2)
\end{array}
$$

There is a similar story in 8D, using F-Theory on elliptic K3.
Singular fibers of type D_{8} can be frozen
For $2 \mathrm{D}_{8}$ there are two possibilities:

(Enhancements agree with [Cvetic, Dierigl, Lin, Zhang 2022])
These two rank 2 components have been taken to be the same in the literature. They are not.

These frozen singularity pairs correspond to $4 \mathrm{D}_{4}$ in 7D just discussed, $2 D_{4}$ embeds into affine D_{8} [Witten 1998]

Natural proposal: D_{8} and $2 \mathrm{D}_{8}$ uplift to 9D frozen singularities, possibly in real elliptic K3.
[Cachazo, Vafa 2000]

$$
D_{8} \rightarrow E_{8}, \quad 2 D_{8} \rightarrow 2 E_{8} \text { or } D_{16}, \quad 2 D_{8}^{\prime} \rightarrow D_{16}^{\prime}
$$

Natural proposal: D_{8} and $2 \mathrm{D}_{8}$ uplift to 9 D frozen singularities, possibly in real elliptic K3.
[Cachazo, Vafa 2000]

$$
D_{8} \rightarrow E_{8}, \quad 2 D_{8} \rightarrow 2 E_{8} \text { or } D_{16}, \quad 2 D_{8}^{\prime} \rightarrow D_{16}^{\prime}
$$

Two rank 2 components in 8D decompactify to:

$$
\begin{array}{ll}
\tilde{\Lambda}_{\text {charge }}=W_{2 E_{8}}^{\perp}=\Gamma_{1,1}, & G_{\text {enh }}=S U(2) \\
\Lambda_{\text {charge }}=W_{\operatorname{Spin}(32) / \mathbb{Z}_{2}}^{\perp}=\Gamma_{1,1}, & G_{\text {enh }}=S U(2) \\
\Lambda_{\text {charge }}^{\prime}=W_{\operatorname{Spin}(32)}^{\perp}=\Gamma_{1,1}(2), & G_{\text {enh }}=S U(2)
\end{array}
$$

Described e.g. by M-Theory on KB, Type I' on S1 with O8+ and O8- (see e.g. [Aharony, Komargodski, Patir 2007]) and same Type l' with discrete theta angle [Montero, HP, to appear]

Conclusion:

updated picture (complete)

rank reduction	$d=9$	$d=8$	$d=7$
8	E_{8}	$\operatorname{Spin}(16)$	$\operatorname{Spin}(8)^{2}$
16	E_{8}^{2}	$\frac{\operatorname{Spin}(16)^{2}}{\mathbb{Z}_{2}}$	$\frac{\operatorname{Spin}(8){ }^{4}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}$
	$\frac{\operatorname{Spin}(32)}{\mathbb{Z}_{2}}$	$\operatorname{Spin}(16)^{2}$	$\frac{\operatorname{Sin}(8)^{4}}{\mathbb{Z}_{2}}$
	$\operatorname{Spin}(32)$	Spi	
12	-	-	E_{6}^{2}
	-	-	E_{7}^{2}
	-	-	E_{8}^{2}
	-	-	$E_{8}^{2 \prime}$
18	-	-	$\frac{E_{6}^{3}}{\mathbb{Z}_{3}}$
	-	-	E_{6}^{3}
	-	-	$\frac{\operatorname{Spin}(8) \times E_{7}^{2}}{\mathbb{Z}_{2}}$
	-	-	$\operatorname{Spin}(8) \times E_{7}^{2}$
	-	-	$\operatorname{Spin}(8) \times E_{6} \times E_{8}$

All compactifications to 6D are contained in partial classification using alternative methods. [Fraiman, HP] (to appear)

