Frozen Singularities and Moduli Spaces in High Dimensions

Hector Parra De Freitas (IPhT Saclay, PhD w/ Mariana Graña)

> Based on upcoming works [HP] and [Montero, HP]

String Pheno 2022, Liverpool

In [de Boer, Dijkgraaf, Hori, Keurentjes, Morgan, Morrison, Sethi 2001] the moduli space of string vacua with 16 supercharges was studied very thoroughly, specially in seven dimensions:

Heterotic description	Orientifold description	M theory on K3 with frozen singularities of type	F theory compactified on
"standard component"	$(-^{8})$	smooth $K3$	$K3 \times S^1$
\mathbb{Z}_2 triple CHL string no vector structure	$(-^6, +^2)$	$D_4\oplus D_4$	$(K3 \times S^1)/\mathbb{Z}_2$
\mathbb{Z}_3 triple		$E_6 \oplus E_6$	$(K3 \times S^1)/\mathbb{Z}_3$
\mathbb{Z}_4 triple		$E_7 \oplus E_7$	$(K3 \times S^1)/\mathbb{Z}_4$
\mathbb{Z}_5 triple		$E_8 \oplus E_8$	$(K3 \times S^1)/\mathbb{Z}_5$
\mathbb{Z}_6 triple		$E_8 \oplus E_8$	$(K3 \times S^1)/\mathbb{Z}_6$
	$(-^4,+^4)_1$	$(D_4)^4$	$(T^4 \times S^1)/\mathbb{Z}_2$
	$(-^4,+^4)_2$		
		$(E_{6})^{3}$	$(T^4 \times S^1)/\mathbb{Z}_3$
		$D_4 \oplus E_7 \oplus E_7$	$(T^4 \times S^1)/\mathbb{Z}_4$
		$D_4 \oplus E_6 \oplus E_8$	$(T^4 \times S^1)/\mathbb{Z}_6$

Frozen singularities are such that they cannot be resolved, thus they reduce the number of moduli and gauge group rank. In this case, due to nontrivial 3-form background. Not well understood.

Heterotic description	Orientifold description	M theory on K3 with frozen singularities of type	F theory compactified on	
"standard component"	$(-^8)$	smooth $K3$	$K3 \times S^1$	$O6^-$
Z ₂ triple CHL string no vector structure	$(-^6, +^2)$	$D_4\oplus D_4$	$(K3 \times S^1)/\mathbb{Z}_2$	
\mathbb{Z}_3 triple		$E_6\oplus E_6$	$(K3 \times S^1)/\mathbb{Z}_3$	
\mathbb{Z}_4 triple		$E_7\oplus E_7$	$(K3 \times S^4)/\mathbb{Z}_4$	$\oplus \oplus$
\mathbb{Z}_5 triple		$E_8 \oplus E_8$	$(K3 \times S^1)/\mathbb{Z}_5$	
\mathbb{Z}_6 triple		$E_8 \oplus E_8$	$(K3 \times S^1)/\mathbb{Z}_6$	
	$(-^4,+^4)_1$	$(D_{4})^{4}$	$(T^4 \times S^1)/\mathbb{Z}_2$	ĢĢ
	$(-^4,+^4)_2$			
		$(E_{6})^{3}$	$(T^4 \times S^1)/\mathbb{Z}_3$	
		$D_4\oplus E_7\oplus E_7$	$(T^4 \times S^1)/\mathbb{Z}_4$	
		$D_4 \oplus E_6 \oplus E_8$	$(T^4 \times S^1)/\mathbb{Z}_6$	j

The highlighted orientifolds are perturbatively inequivalent. Nonperturbative inequivalent if there exist inequivalent embeddings (uplifts to K3)

 $4 D_4 \hookrightarrow \Gamma_{3,19}$

To see this, in both cases Exchange ("unfreeze") $O6^+ \longrightarrow O6^- + 4D6$ This is usual Type II orientifold, dual to Spin(32)/Z₂ Heterotic on T³

 $W_{Spin(8)^4/\mathbb{Z}_2^2}$

$$A_{1} = (0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}),$$

$$A_{2} = (0, 0, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}),$$

$$A_{3} = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).$$

$$W_{Spin(8)^4/\mathbb{Z}_2}$$

To see this, in both cases Exchange ("unfreeze") $O6^+ \longrightarrow O6^- + 4D6$ This is usual Type II orientifold, dual to Spin(32)/Z₂ Heterotic on T³

 $W_{Spin(8)^4/\mathbb{Z}_2^2}$

$$A_{1} = (0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{2}, \frac{1}{2}), A_{2} = (0, 0, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), A_{3} = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).$$

$$W_{Spin(8)^4/\mathbb{Z}_2}$$

$$\Lambda_{charge} = W_{Spin(8)^4/\mathbb{Z}_2^2}^{\perp} = \Gamma_{1,1} \oplus \Gamma_{2,2}(2), \qquad G_{enh} = SU(2)^3/\mathbb{Z}_2^2$$
$$\Lambda_{charge}' = W_{Spin(8)^4/\mathbb{Z}_2}^{\perp} = \Gamma_{3,3}(2), \qquad G_{enh} = SU(2)^3$$

Similarly, there are two inequivalent embeddings for $3E_6$ and $2E_7+D_4$, [Fraiman, HP 2021] Hence **two different moduli space components** for each:

$$\begin{aligned} \mathsf{3E}_{6}: & \Lambda_{charge} = W_{E_{6}^{3}/\mathbb{Z}_{3}}^{\perp} = A_{2}(-1) \oplus \Gamma_{1,1}, & G_{enh} = SU(2) \\ \Lambda_{charge}' = W_{E_{6}^{3}}^{\perp} = A_{2}(-1) \oplus \Gamma_{1,1}(3), & G_{enh} = SU(2) \end{aligned}$$

$$\begin{array}{l} \mathbf{2E_{7}+D_{4}:} & \Lambda_{charge} = W_{E_{7}^{2}\times Spin(8)/\mathbb{Z}_{2}}^{\perp} = 2\,A_{1}(-1)\oplus\Gamma_{1,1}, \quad G_{enh} = SU(2) \\ & \Lambda_{charge}^{\prime} = W_{E_{7}^{2}\times Spin(8)}^{\perp} = 2\,A_{1}(-1)\oplus\Gamma_{1,1}(2), \quad G_{enh} = SU(2) \end{array}$$

There is a similar story in 8D, using F-Theory on elliptic K3. Singular fibers of type D_8 can be frozen [Witten 1998], For $2D_8$ there are two possibilities: [Bhardwaj, Morrison, Tachikawa, Tomasiello 2018]

 $\Lambda_{charge} = W_{Spin(16)^2/\mathbb{Z}_2}^{\perp} = \Gamma_{1,1} \oplus \Gamma_{1,1}(2), \quad G_{enh} = SU(2)^2/\mathbb{Z}_2$ $\Lambda_{charge}' = W_{Spin(16)^2}^{\perp} = \Gamma_{2,2}(2), \qquad \qquad G_{enh} = SU(2)^2$

(Enhancements agree with [Cvetic, Dierigl, Lin, Zhang 2022])

These two rank 2 components have been taken to be the same in the literature. They are not.

These frozen singularity pairs correspond to $4D_4$ in 7D just discussed, $2D_4$ embeds into affine D_8 [Witten 1998]

Natural proposal: D_8 and $2D_8$ uplift to 9D frozen singularities, possibly in real elliptic K3. [Cachazo, Vafa 2000]

$$D_8 \to E_8 \,, \qquad 2 \, D_8 \to 2 \, E_8 \,\, {\rm or} \,\, {\color{black} D_{16}} \,, \qquad 2 \, D_8' \to D_{16}'$$

Natural proposal: D₈ and 2D₈ uplift to 9D frozen singularities, possibly in real elliptic K3. [Cachazo, Vafa 2000]

$$D_8 \to E_8 \,, \qquad 2 \, D_8 \to 2 \, E_8 \,\, {\rm or} \,\, {\color{black} D_{16}} \,, \qquad 2 \, D_8' \to D_{16}'$$

Two rank 2 components in 8D decompactify to:

$$\begin{split} \tilde{\Lambda}_{charge} &= W_{2E_8}^{\perp} = \Gamma_{1,1}, & G_{enh} = SU(2) \\ \Lambda_{charge} &= W_{Spin(32)/\mathbb{Z}_2}^{\perp} = \Gamma_{1,1}, & G_{enh} = SU(2) \\ \Lambda'_{charge} &= W_{Spin(32)}^{\perp} = \Gamma_{1,1}(2), & G_{enh} = SU(2) \end{split}$$

Described e.g. by M-Theory on KB, Type I' on S1 with O8+ and O8- (see e.g. [Aharony, Komargodski, Patir 2007]) and same Type I' with discrete theta angle [Montero, HP, to appear]

Conclusion:

updated picture (complete)

rank reduction	d = 9	d = 8	d = 7			
8	E_8	Spin(16)	$Spin(8)^2$			
16	$\frac{E_8^2}{\frac{Spin(32)}{\mathbb{Z}_2}}$	$\frac{Spin(16)^2}{\mathbb{Z}_2}$	$\frac{Spin(8)^4}{\mathbb{Z}_2 \times \mathbb{Z}_2}$			
	Spin(32)	$Spin(16)^2$	$\frac{Spin(8)^4}{\mathbb{Z}_2}$			
12	1 	-	E_{6}^{2}			
14	-	_	E_{7}^{2}			
16	5 -	-	E_{8}^{2}			
	-	- 1	$E_8^{2'}$			
18		-	$\frac{E_6^3}{\mathbb{Z}_3}$			
	-	_ 2	E_6^3			
		-	$\frac{Spin(8) \times E_7^2}{\mathbb{Z}_2}$			
	-	- 1	$Spin(8) \times E_7^2$			
		-	$Spin(8) \times E_6 \times E_8$			

All compactifications to 6D are contained in partial classification using alternative methods. [Fraiman, HP] (to appear)

Thank You!